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Abstract
Reasoning is the crux of intellectual thinking.
While question answering (QA) tasks are prolific
with various computational models and bench-
mark datasets, they mostly tackle factoid or shal-
low QA without asking deeper understanding.
Dual process theory asserts that human reason-
ing consists of associative thinking to collect rele-
vant pieces of knowledge and logical reasoning to
consciously conclude grounding on evidential ra-
tionale. Based on our intensive think-aloud study
that revealed the three types of questions: sur-
face, testing, and deep questions, we first pro-
pose the QASA benchmark that consists of 1798
novel question answering pairs that require full-
stack reasoning on scientific articles in AI and
ML fields. Then we propose the QASA approach
that tackles the full-stack reasoning with large lan-
guage models via associative selection, evidential
rationale-generation, and systematic composition.
Our experimental results show that QASA’s full-
stack inference outperforms the state-of-the-art
INSTRUCTGPT by a big margin. We also find
that rationale-generation is critical for the per-
formance gain, claiming how we should rethink
advanced question answering. The dataset is avail-
able at https://github.com/lgresearch/QASA.

1. Introduction
Reasoning differentiates human intellectual capabilities
from low-level intelligence. Dual process models theorize
that cognitive reasoning is a two-stage process where the
first stage performs associative thinking and the second
stage performs logical reasoning (Wason & Evans, 1974;
Tsujii & Watanabe, 2009; Evans, 2012). Within the con-

*Equal contribution 1KAIST (Work done at LG AI Re-
search) 2LG AI Research 3Yonsei University 4University of
Illinois Chicago. Correspondence to: Mootae Lee <moon-
tae.lee@lgresearch.ai>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. An example of QASA. A question that the reader/author
asks about the paper while reading the paper. To formulate the
answer, one classifies whether the paragraph contains evidence
to answer the question. Evidential rationales are written for each
evidential paragraph and are systematically composed into a com-
prehensive answer.

text of Question Answering (QA), the first stage extracts
associative pieces of knowledge based on lexical matching
and other cognitive heuristics, inductively expanding po-
tential evidences. Then the second stage consciously finds
evidential rationales, deductively converging to the answer
via systematic compositions of the evidences. This process
uniquely characterizes advanced human reasoning, posing a
non-trivial challenge to machine learning QA systems.

Reading Comprehension (RC) is one type of reasoning
task that can formulate various questions and answers.
SQuAD (Rajpurkar et al., 2016), NewsQA (Trischler et al.,
2017), DROP (Dua et al., 2019), and Natural Questions
(Kwiatkowski et al., 2019a) have been proposed. While com-
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peting on their model performance significantly improves
machine answering capabilities, these datasets consist of fac-
toid QAs mostly in the form of “what”, “when”, “where”,
or “who”. Thus extracting short spans from the relevant
context can easily provide correct answers, but the trained
models can barely answer “how” and “why” questions.

Recent work on open-domain QA (Karpukhin et al., 2020;
Guu et al., 2020; Liu et al., 2021; Izacard & Grave, 2021;
Izacard et al., 2022) exploits the Retrieve-then-read ap-
proaches, where the system first retrieves relevant docu-
ments from a large corpus then reads out concrete answers.
These approaches target shallow questions that are often
inferable relying only on the first stage rather than jointly
using the both stages. Some reasoning tasks like bAbI and
its permuted version (Weston et al., 2015; Rajendran et al.,
2018) require logically correct spatial reasoning. However,
the artificial nature of their QAs minimally leverages the
second stage as their reasoning tasks do require neither
rich retrieval of associative information from the first stage
nor systematic composition of the final answers (Lee et al.,
2016).

Our think-aloud study reveals that reading scientific articles
not only raises surface questions but also induces testing and
deep questions that require full-stack reasoning. In addition,
carefully answering surface questions turns out to involve
both first and second stage reasoning, requiring significantly
more elaborated efforts compared to what previous datasets
and models implicitly assumed. To answer for such naturally
advanced questions, we propose the Question Answering
on Scientific Articles (QASA), a novel QA benchmark and
an approach that realize the full-stack cognitive reasoning
from the first to the second stages. Our QASA benchmark
differs from existing ones on the following aspects:

• Based on our think-aloud study, we design a schema for
advanced questions as surface, testing, and deep ques-
tions, then collecting balanced QA pairs form the authors
of research papers as well as from expert readers.

• We guide readers and authors to ask questions while read-
ing the whole paper rather than gathering only extractive
questions from paper abstracts.

• Readers and authors are asked to propose their multi-
faceted long-form answers to the collected questions,
then composing a comprehensive final passage than sim-
ply summarizing evidential rationales with added fluency.

Our QASA benchmark contains 1798 QA pairs on AI/ML
papers where the questions are asked by regular readers of
AI/ML papers and answered by AI/ML experts. Each paper
has 15.1 questions on average, up to a maximum of 29 ques-
tions for a single paper. We collect 39.4% of deep reasoning
level questions based on our own question schema. And,

Method
Associative

selection
Evidential

rationale-generation
Systematic

composition

QASPER ✓ ✗ ✗

ELI5 ✗ ✗ ✗

ASQA ✓ ✗ ✓

AQuaMuSe ✗ ✗ ✓

QASA (ours) ✓ ✓ ✓

Table 1. Comparison of existing datasets and our QASA.

maximum 9 evidential rationales are leveraged to compose
the final answer.

Our QASA approach models the full-stack reasoning process
via state-of-the-art large language models. We decompose
the process into three subtasks: associative selection (to
extract relevant information from paragraphs), evidential
rationale-generation (to grasp only evidential rationale from
each extracted paragraph), and systematic composition (to
stitch evidential rationales into a comprehensive answer
without redundancy). Modeling each subtask by pretrained
large language model with existing datasets, we demon-
strate that our best test-bed outperforms the state-of-the-art
InstructGPT (OpenAI’s text-davinci-003) by 5.11 Rouge-1
points. We further verify that directly generating an answer
from selected paragraphs causes performance drop, opening
a crucial insight for tackling advanced question answering.

2. Related Work
The relevant research consists of three categories: QA for
academic research papers, long-form QA, and query-based
multi-document summarization. Table 1 highlights our
method against existing approaches in each groups.

QA for Academic Research Papers Several datasets
have been proposed for QA on academic research papers
including emrQA (Pampari et al., 2018), BioRead (Pappas
et al., 2018), and BioMRC (Stavropoulos et al., 2020). They
automatically construct their QA examples by extracting en-
tities and relations as well as structure knowledge resources.
Thus these datasets would unlikely reflect real-world sce-
narios where users have more advanced and open-ended
questions (Kwiatkowski et al., 2019b). Closest to our work,
QASPER (Dasigi et al., 2021), consists of 5K QA on NLP
domain papers. However, most examples in QASPER rep-
resent shallow questions focused on completing concepts
because the annotators produced the questions after reading
only the title and abstract of a provided paper. Additionally,
in QASPER, more than 70% of answerable questions consist
of short-form answers, such as yes/no and small extractive
span. In contrast, we ask our annotators to read further into
main sections, demanding various types of questions based
on our studied schema. As a result, the questions in our
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QASA cannot be simply answered with extracting spans
form selected evidence paragraph. It truly urges full-stack
reasoning.

Open-domain Long-form QA ELI5 (Fan et al., 2019)
collected open-domain questions with paragraph-level an-
swers collected from Reddit forum and extracted the rele-
vant sentences from web documents, which are provided as
supporting evidence. However, only 65% of the questions
have sufficient supporting evidence, while all the answers
of our dataset have evidence paragraph through associative
selection. Stelmakh et al. (2022) have claimed that factoid
questions in the ELI5 dataset are mostly ambiguous, and
thus can be decomposed into sub-questions. ASQA (Stel-
makh et al., 2022) requires to answer all the sub-questions
over multiple passages. Our QASA differs in two ways:
(1) our dataset includes evidential rationales, compositional
element of long-form answer, (2) ours is made through a
systematic composition that considers implicit relations be-
tween multiple rationales, rather than simply synthesizing
the sub-answers.

Query-focused Multi-Document Summarization (qMDS)
For qMDS, some datasets in various domains have been pro-
posed, such as QMSum for meeting transcripts (Zhong et al.,
2021), Squality for science fiction (Wang et al., 2022a), and
AQuaMuSe for wikipedia (Kulkarni et al., 2020). The goal
of these tasks is to find an answer over multiple documents,
which is similar with ours. However, qMDS datasets such as
AQuaMuSe and QMSum have the limitation of using noisy
and insufficient contexts as multi-documents, since they
used automatically-generated passages extracted by lexical
matching. To address the issue of insufficiency of dedicated
training data, the previous work (Baumel et al., 2018) adopts
transfer learning techniques. In comparison to qMDS, our
task provides human-annotated evidences aligned with a
particular paragraph and answer summaries composed of
multi-evidences. Additionally, qMDS focuses on summariz-
ing text without redundancy, while we aim to generate rich
long-form answers including multiple rationales.

3. Proposed Task
In this section, we propose a new task for question answer-
ing over scientific articles. The core idea of our proposed
task is to answer the questions based on multiple evidence
snippets that are spread over a long research paper. Specifi-
cally, we denote a question as q, an answer as a, and para-
graphs in the paper as P = {p1, ...pN}. A one-step ap-
proach to process N paragraphs would be adopting length-
scalable transformer such as LongFormer (Beltagy et al.,
2020), which enables to encode the multiple snippets at
once. In contrast, our advanced questions triggered from
research papers requires to connect between rationales for

deep reasoning. Hence, we design this problem as multi-step
subtasks: (1) associative selection, (2) evidential rationale-
generation, and (3) systematic composition. Figure 2 shows
the overview of our approach.

Associative Selection While research papers have multi-
ple paragraphs (e.g., 20-60 paragraphs), the first step is to
extract associative knowledge from the paragraphs, corre-
sponding to a question. Specifically, given question q and
paragraphs P = {p1, ...pN}, we aim to select evidential
paragraphs P̄ = {p̄1, ...p̄k} that contains an answer or ra-
tionales to question q, where k ≪ N . While the previous
work (Rajpurkar et al., 2018) aims to classify answerability
whether a given passage contains answer a to question q,
the answer in our task is composed of multiple rationales in-
cluding a main answer. Our associative selection task can be
viewed as the super-task of answerability (i.e., answerable
is evidential, but not the reverse).

Evidential Rationale-Generation In this step, we gener-
ate an evidential rationale on each selected paragraph, which
could be part of a final long-form answer in the next step.
Based on the prior work about discourse structure of an-
swers to complex questions (Xu et al., 2022), the evidential
rationale can be the (1) main answer (i.e., main content of
the answer which directly addresses the question), (2) elabo-
ration (i.e., sentences which elaborate on the main answer),
and (3) auxiliary information (i.e., background knowledge
that could be helpful to the user). Specifically, we denote the
evidential rationale that is inferred from (q,pi) as ei. That
is, from the selected P̄ = {p̄1, ...p̄k}, we obtain a list of
evidential rationales {e1, ..., ek}.

Systematic Composition To provide concise and readable
information to users, the goal of this last step is to systemat-
ically compose all the evidential rationales {e1, ..., ek} into
a final comprehensive answer a. Assuming that the answer
is composed of multi-rationales, we aim to preserve all the
rich rationales in the final answer, except duplicated texts.
Specifically, we aggregate the list of texts {e1, ..., ek} into
a single context, and then compose final answer a from the
context. The answer a grounded on a given paper could be
viewed as comprehensive explanations about question q.

4. Building the QASA Dataset
Prior to data collection, we conducted a preliminary study
for identifying what kinds of questions are raised when read-
ing papers. Based on our findings, we design a schema to
collect diverse and balanced questions with different levels
of reasoning. As the source of the QASA, we gather a set
of open-access AI/ML papers. To collect advanced ques-
tions that require reasoning over evidential rationales, we
recruited AI/ML practitioners or researchers who regularly
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Figure 2. An overview of QASA approach. The language model works depending on task-specific instructions.

read research papers and conducted two separate sessions
from the perspective of both readers and authors.

4.1. Preliminary Study

In the aim of identifying what kinds of questions readers ask
while reading, we conduct a think-aloud study (N = 10),
a standard approach in human-computer interaction (HCI)
for capturing human’s intent during a task. Our analysis
of 127 questions revealed that 67% of questions required a
two-stage process, and the types of reasoning needed in the
second stage varied even among these questions. Referring
to the prior literature on question taxonomy in the education
domain, there are distinct types of questions ranging from
surface questions to deeper questions that require more rea-
soning and interpretation to answer (Graesser et al., 1992;
Graesser & Person, 1994). To gather diverse and balanced
types of questions, we design a schema for paper ques-
tions by adapting the prior literature in education to a paper
reading context and interpreting data collected from our
think-aloud study. This schema includes not only questions
requiring second stage reasoning, but also a spectrum of rea-
soning types needed to answer them. The definitions of each
question type are shown below and detailed explanations
with examples can be found in Appendix B.

• Surface questions aim to verify and understand basic
concepts in the content. The answer content is directly
related to the words in the question and immediate con-
text. This type includes verification, distinctive, concept
completion questions.

• Testing questions are focused on meaning-making and
forming alignment with readers’ prior knowledge. These

questions aim to find similar examples (example), quan-
tify variables (quantification), and find meaning and
make comparisons across concepts (comparison).

• Deep questions ask about the connections among the
concepts in the content and elicit advanced reasoning
in logical, causal, or goal-oriented systems. This type
includes causal antecedent, causal consequence, goal
orientation, instrumental/procedural, rationale, expecta-
tion questions.

4.2. Papers

To collect papers, we adopt S2ORC (Lo et al., 2020), a
collection of machine-readable full text for open-access
papers, and the arXiv1 paper collection. We only use papers
within the CS.AI domain in the arXiv dataset and apply two
filtering criteria to the papers in the S2ORC collection: (1)
published after 2015 and (2) has more than 100 citations.

4.3. Data Collection

With the aim of collecting various advanced questions (sur-
face to deep), we conduct two types of sessions, reader
sessions where we collected QAs from general readers and
author sessions where authors annotated questions about
their own papers. We perform author sessions since authors
are the optimal annotators who can make challenging and
insightful questions that could be asked by experts, like
reviewers—granting greater diversity to the questions in
our benchmark. For the reader session, to make the data
collection process similar to a real context, we decouple the

1https://arxiv.org/help/bulk_data
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questioning and answering phase following the collection
process of QASPER (Dasigi et al., 2021). For both tasks,
we recruited graduate students studying AI/ML and free-
lancers practicing AI/ML through professional networks
and Upwork.2 For the answering task, we qualify annota-
tors through the exams related to our task and experience
in the domain. Details on the data collection procedure and
workers’ information are given in Appendix A.

Questions To ensure that our questions are realistic, we
allow annotators to choose papers that they wanted to read.
Additionally to replicate differing reading styles, we asked
annotators to follow one of two scenarios: read all the sec-
tions in the paper (i.e., deep reading) or read only certain
sections (i.e., skim reading). To collect diverse types of
questions, we provide them with the question schema and
asked them to make a balanced number of questions for
each type. In the same vein, we also recommend annotators
to make at least one question per subsection that they read.
When annotating questions, annotators were instructed to
write the trigger sentences that raised the question but that
did not contain the answer. While they were not used in this
work, trigger sentences could be used in future research for
question generation from long-form text and to complement
the ambiguity of questions that occur in long-form text.

Answers To collect answers, we ask answerers to choose
papers from the papers that the questioners worked on. We
guide answerers to compose their answers into a compre-
hensive passage based on the their own-generated evidential
rationales from the selected paragraphs. To let them follow
our guideline more easily, we provide the annotators with
the answering interface when answering the questions. They
were shown the question, the full paper, the name of the sec-
tion that triggered this question, and ten paragraphs that are
the most relevant to the question. We provide top ten para-
graphs by following that existing IR research (Carterette
et al., 2010) adopted a pooling method, where top ranked
documents are selected to create the pool of documents that
need to be judged when creating evaluation dataset. Our
top-10 relevant paragraphs were chosen with an off-the-
shelf embedding model.3 When answering each question,
annotators were asked to do the following subtasks.

First, they are asked to look through the ten relevant para-
graphs and, for each, make a binary decision as to whether
the paragraph is evidence paragraph. If there is no relevant
paragraph chosen to have evidence, annotators could freely
choose other paragraphs from the paper as having evidence
in addition to the ten paragraphs we provided. Second, for
each paragraph that was chosen, annotators are instructed
to write evidential rationale from that paragraph. Evidential

2https://upwork.com/
3https://api.openai.com/v1/embeddings

rationale could be the (1) main answer to the question, (2)
elaboration, or (3) auxiliary information (Xu et al., 2022).
Third, they write a final comprehensive answer by compos-
ing the multiple evidential rationales that they generated
for each evidence paragraph. When the answer cannot be
fully answered even after composing multiple evidential
rationales, annotators are instructed to answer as much as
possible with the available information and then specify
which part of the question cannot be answered. When a
question is completely unanswerable, we ask annotators to
indicate that the author do not provide an explanation for
the missing information and to specify what information
is missing. Finally, they annotate whether writing the final
answer requires to compose multiple evidential rationales
(True) or not (False)—i.e., no complex reasoning is needed
and they only simplify text from the paper without adding
redundancies.

All annotators who ask questions and write answers con-
ducted a practice session to familiarize themselves with
the annotation guidelines. Annotations from the practice
sessions were reviewed by two authors, and discrepancies
between the annotators and the guidelines were discussed.
Additional practice sessions were conducted for annotators
with substantial discrepancies. If annotators were judged as
not having sufficient background knowledge or understand-
ing of the task even after these sessions, we did not let them
participate in the tasks.

Authors We recruited paper authors to annotate QAs for
their own papers to cover deeper questions that existing
datasets rarely cover. We instructed authors to make only
testing and deep types of questions and to annotate trigger
sentences that might cause readers to become curious about
that question. The rest of the annotation process is similar
to the readers’ sessions. We recruited 17 authors whose do-
mains are distributed in CV, NLP, GNN, generative models,
and music information retrieval.

4.4. QASA Analysis

Representative examples from QASA is in Table 7 (in Ap-
pendix E).

Question types In terms of question types, two domain
experts manually evaluated 100 randomly sampled ques-
tions. 89% of the annotated question types were aligned
with domain experts’ annotations.4 To describe the diversity
of our dataset, we analyze the distribution of the types of the
questions in QASA. Among the three types, 39.4% of the
questions are deep questions, 30.0% are testing, and 30.7%
are surface-level. Among the deep questions, instrumental

4Two domain-experts independently judged these and achieved
Cohen’s κ scores of 0.91.
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sub-type (12%) accounts for most of the deep questions,
and comparison (11%) and concept completion (17%) are
the most annotated questions for the testing and surface
questions, respectively.

Distribution of evidential rationale We also analyze to
identify the number of evidential rationales that are needed
to answer the questions depending on their types. Among all
the questions, 12% of questions are annotated as having no
evidential rationales, which means that they are unanswer-
able questions. Out of the answerable questions, the average
number of evidential rationales is 1.67. Surface questions
need the most evidential rationales (1.73) while testing ques-
tions and deep questions need 1.66 and 1.63, respectively,
which implies that our surface-level questions like “Do
the authors claim that bigger datasets would improve the
performance and expressiveness of reading comprehension
models?” also need systematic reasoning to answer.

Composition, Correctness, Groundedness On average,
49.6% of answers require annotators to compose eviden-
tial rationales, while the rest (50.4% of answers) only need
simplifying redundant rationales. To analyze which ques-
tion type requires the most reasoning to answer, we analyze
the ratio of compositionality depending on the question
type. Deep questions need composing the most (44.6%)
in comparison with testing (29.0%) and shallow (26.4%)
questions. To estimate the correctness of the answer annota-
tions and groundedness of the answer annotation, domain
experts manually analyzed 100 randomly sampled questions.
We find that 90% of the answers are correct and 87% are
grounded well on the paper.

5. QASA Approach
In this section, we propose a QA approach for QASA over
research papers. Our task requires to answer questions
based on multiple passages whose supporting evidences are
spread over a whole paper. As above-mentioned, our tasks
consist of (1) associative selection, (2) evidential rationale-
generation, and (3) systematic composition. As shown in
Figure 2, we train LM models with multi-task instructions,
following recent works (Chung et al., 2022; Wei et al., 2021;
Aribandi et al., 2021; Sanh et al., 2021).

5.1. Multi-step QA system based on LM

Pre-processing via Retrieval Before the first step of as-
sociative selection, we consider pre-processing step using
a retrieval model to narrow the search space, from a whole
paper to top-N related paragraphs (we set N=10). This
enables the efficient selection step, while compromising
the recall of evidential paragraphs. Specifically, we used
the off-the-shelf model provided by OpenAI, and leave the

question of improving retrieval for future work. Through
the retrieval, we encode all paragraphs in the given paper
and a target question into dense vectors, and extract top-N
nearest neighbor paragraphs by using cosine similarity.

Finetuning Large Language Model with Multitask In-
structions We finetune large language models (LLMs) on
a mixture of our subtasks through instruction tuning (Wei
et al., 2021). As in previous work (Wei et al., 2021; Aribandi
et al., 2021), it is known that instruction tuning makes LMs
generalizable on unseen tasks. As shown in Figure 2, a
single LM takes task input with instruction that indicates
each subtask. The output of the previous step is sequentially
passed to the next step. However, in the selection task, if the
model does not select any paragraph as evidence, it also can-
not generate rationales or answers. Instead of solving this
problem, we used top-3 paragraphs if none were selected,
which is left to future work. For task-specific prompts, we
used manually-written instructions for each subtask (See
Appendix D). As state-of-the-art LLMs, we consider the
following models:

• T5 (Raffel et al., 2020) (Version 1.1, LM-Adapted): it is
pretrained on Common Crawl (Raffel et al., 2020) using
Transformer with encoder-decoder architecture.

• T0 (Sanh et al., 2021): starting from T5, it is further
trained on 8 downstream tasks.

• FLAN-T5 (Chung et al., 2022): similar with T0, it is fur-
ther trained with scaling up multi-tasks (1k+) including
reasoning tasks.

• GALACTICA (Taylor et al., 2022): it is pretrained on a
large collection of scientific papers, with the decode-only
architecture like GPT.

5.2. Training Data

No training resources have been proposed that support our
full-stack QA, and we therefore exploit public and synthetic
data for the purpose of each subtask. Table 2 shows a
summary of used public data.

Task Dataset
Associative Selection QASPER, ASQA
Rationale Generation QASPER
Answer Composition ASQA, ELI5

Table 2. Training Resources for our QA system.

For associative selection, we adopt answerability labels –
whether the pair of question and knowledge is answerable
or not. In case of ASQA (Stelmakh et al., 2022), we treat
the pair of (q and p+) as a positive example, and (question q,
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randomly-sampled p−) as negative. For QASPER (Dasigi
et al., 2021), we leverage pairs of (question q, gold para-
graph p+ that contains an answer). The limitation of adopt-
ing these datasets is that they aim to capture the presence
of an answer, while we target that of evidential rationales,
which may affect recall of rationales.

The rationale-generation task requires to generate evidential
rationale e from (question q, paragraph p). Unfortunately,
to the best of our knowledge, there is no data to support
this task. As an alternative source, we used the triplets
of (q,p,a) in QASPER (Dasigi et al., 2021), where gold
knowledge p always contains information about answer a
to q. We treat answer a as evidential rationale, since the QA
labels in QASPER do not require to reason over multiple
passages, which is expected to learn the ability of extracting
question-focused evidences from a given paragraph.

Lastly, for systematic composition, we adopt long-form QA
data with multiple evidences. We select ELI5 and the subset
of ASQA, which provide selected evidence passages from
the pool of passages for answer generation. That is, this task
is to generate answer a inferred from the context (question q,
multi-evidences {e1, ...en}), which requires to consolidate
and summarize scattered information.

For synthetic data, recent works distill training data from
InstructGPT (Wang et al., 2022b; Honovich et al., 2022).
Inspired, we distil training examples for QASA from large
language models by prompting instruction and an in-context
example. We use OpenAI’s InstructGPT (text-davinci-003)
with the temperature set to 0.1, which is the state-of-the-art
model on many NLP tasks. Specifically, we first extract
AI and ML papers from arXiv, and generate questions over
each paragraph sampled from the papers. Then, given the
questions, we test InstructGPT following instructions in our
subtasks, as shown in Appendix D. While LLMs have a
general problem of factual inconsistency, known as hallu-
cination, we found that InstructGPT performs well on the
rationale generation task (See Table 3). Although there is no
public data to support rationale generation, we can alleviate
the insufficiency through evidential rationales obtained from
InstructGPT, which would boost our full-stack QA.

6. Experiment
In this section, we evaluate our QASA approach on the
proposed benchmark. In our experiment, we apply state-
of-the-art LMs as two variants: Pretrained and Finetuned
versions. In Sec 6.1 and 6.2, we automatically evaluate
models on three subtasks: (1) associative selection, (2)
rationale-generation, (3) answer composition, and their full-
stack QA task. To complement automatic evaluations in our
generation task, we conduct human evaluation in Sec 6.3
and an error analysis in Sec 6.4.

6.1. Experimental Setting

Evaluation of Subtasks and Full-stack QA For subtask
evaluation, we provide oracle (or gold) contexts, in order
to evaluate each subtask independently. In the associative
selection task, we consider both positive paragraphs labeled
by humans and negative paragraphs among top-10 retrieved
results as candidate pool. For rationale-generation, we
generate evidential rationale conditioned only on each of
gold positive paragraphs. Similarly, for answer composition,
we provide a list of gold evidential rationales as contexts. In
contrast, for the full-stack QA, we consider the results of
previous task as input to the next task sequentially, which
could propagate the errors of the previous steps. Meanwhile,
we conduct an ablation experiment, to directly generate
final answers from selected paragraphs without rationale-
generation (“w/o Rationale Gen” in Table 4).

Metric For associative selection, we measured the preci-
sion (P), recall (R), and F1 score. For rationale-generation
and answer composition tasks, we used a standard text gen-
eration metric – ROUGE scores (Lin, 2004).

6.2. Main Results

Table 3 shows the automatic evaluation results of several
QA systems on three subtasks and full-stack QA task.

Which pretrained LM is best? Among the pretrained
LMs, INSTRUCTGPT (175B) outperformed others. Espe-
cially in the rationale-generation task, it shows the best
performance among all models. Among T5-based LMs,
the number of downstream tasks used during training had
a significant impact on the performances in full-stack QA,
showing T5 < T0 < FLAN-T5.

Which finetuned LM is best? When comparing finetuned
T0, T5, and FLAN-T5, these models show little difference
in performances on three subtasks. However, FLAN-T5
outperformed all other LMs on the full-stack QA, even the
state-of-the-art model, INSTRUCTGPT (175B). Based on
this observation, we suggest the finetuned FLAN-T5 could
serve as a good test-bed for QASA.

The effect of training resources we curated For an ab-
lation study, we trained individual Flan-T5 on each one of
four datasets (QASPER, ASQA, ELI5, Augmented Data
from GPT (or GPT AUG)). Through the comparison, we
can observe negative transfer across datasets, e.g., FLAN-T5
trained on ASQA-ONLY shows the best results in the an-
swer composition task, outperforming FLAN-T5 trained
on combined data. Meanwhile, training of GPT AUG
improved significantly the performances in the rationale-
generation task, which is essential for our full-stack QA, as
other resources do not contain rationales.

7
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Method Associative Selection Rationale Generation Answer Composition

(P) (R) (F1) (R-1) (R-2) (R-L) (R-1) (R-2) (R-L)
Pretrained LMs (Accessible Checkpoints or API)

GALACTICA(6.7B) 18.70 94.28 29.36 7.06 0.50 5.01 8.93 1.03 6.84
T5 (3B) 6.85 6.83 5.78 26.99 11.31 20.64 27.46 16.08 21.85
T0 (3B) 6.92 7.60 6.39 20.19 9.75 17.71 32.75 20.49 29.30
FLAN-T5 (3B) 37.50 38.57 34.64 20.30 11.62 18.36 40.90 27.30 35.78
INSTRUCTGPT (175B) 31.78 51.97 34.72 41.27 24.69 33.64 47.27 28.22 36.09

Finetuned LMs (on Collected Data)
GALACTICA (6.7B) 31.70 47.39 33.32 8.45 1.07 6.98 13.90 2.44 10.41
T5 (3B) 39.79 56.56 40.71 26.73 13.02 22.64 46.40 29.60 38.55
T0 (3B) 39.04 77.29 45.16 27.86 13.40 23.45 46.78 29.29 38.24
FLAN-T5 (3B) 37.13 59.97 45.86 27.63 13.65 23.33 45.59 28.80 37.24
FLAN-T5 (3B, QASPER-ONLY) 30.67 91.43 41.67 23.47 13.13 20.94 40.51 26.88 35.57
FLAN-T5 (3B, ASQA-ONLY) 21.39 98.97 32.84 24.72 13.90 21.62 48.97 31.93 40.34
FLAN-T5 (3B, ELI5-ONLY) 46.80 36.16 40.80 21.03 11.59 18.74 33.24 18.17 28.59
FLAN-T5 (3B, GPT AUG-ONLY) 31.58 28.82 27.85 29.22 13.69 24.15 48.53 31.19 38.80

Table 3. The results of baseline systems on three subtasks in QASA, measured by Precision, Recall, F1 score, and ROUGE scores. The
best results in each column are bold-faced, and 2nd best results are underlined.

Method Full-stack QA

(R-1) (R-2) (R-L)
Pretrained LMs (Accessible Checkpoints or API)

GALACTICA (6.7B) 15.56 3.65 11.44
T5 (3B) 9.83 0.58 8.01
T0 (3B) 15.60 4.28 12.15
FLAN-T5 (3B) 22.48 9.52 18.45
INSTRUCTGPT (175B) 27.11 11.90 19.75

Finetuned LMs (on Collected Data)
GALACTICA (6.7B) 20.93 6.16 15.01
T5 (3B) 26.66 11.45 20.73
T0 (3B) 29.75 13.13 22.75
FLAN-T5 (3B) 32.22 14.62 24.53
w/o Rationale Gen 27.73 11.31 19.32

Table 4. The results of full-stack QA systems on QASA.

Does our task indeed need rationale-generation? For
our full-stack QA, while we first generate rationales and
then compose them into a final answer, we can directly
generate an answer from selected paragraphs, skipping the
step of rationale generation. However, as shown in Table 4,
FLAN-T5 “w/o Rationale Gen” showed poor performance,
compared to our three-step approach, which means the ra-
tionale generation step is crucial for the full-stack QA.

The failure of Galactica Although GALACTICA was pre-
trained on a large-scale collection of research papers, it
performed worse on overall tasks compared to other mod-
els. The low performance of GALACTICA was consistently

observed in Singhal et al. (2022), compared to PubMedGPT
of 2.7B. We empirically found that GALACTICA often an-
swered either “yes” or “no”, and terminated the generation,
in which case the Rouge score is almost zero.

6.3. Human Evaluation

Although automated metrics can measure crucial aspects of
our task, they are not guaranteed to closely approximate the
judgment of humans, whose satisfaction is an overarching
goal of a QA system. Therefore, we performed human
evaluations based on the dimensions that should be satisfied
in this task.

We conducted a pairwise evaluation scheme where evalu-
ators compare two answers to the same question, inspired
by Stelmakh et al. (2022). We provided two responses to
each human evaluator, one from ours and the other from In-
structGPT. The human evaluators could read the rationales
and the generated responses side-by-side. Then, the eval-
uators were asked to choose the better answer in terms of
four criteria: Groundedness, Completeness, Specificity, and
Fluency, following prior work (Stelmakh et al., 2022; Thop-
pilan et al., 2022). For each data point, we assigned three
evaluators to collect three trials of such pairwise judgments.
The scoring system awards one point for a win and half a
point for a tie in pairwise comparisons. The annotations
were collected on 100 QA pairs by 9 experts.

The results of this human evaluation in Figure 3 show that
the answers from our full-stack QA tend to be more com-
plete and grounded than those from InstructGPT, which is
consistent with the results from the automatic evaluation. In
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Figure 3. The results of human evaluation, comparing Ours to
InstructGPT on four dimensions across 100 samples.

contrast, the InstructGPT’s answers tend to be more fluent
and specific, regardless of the reliability of its generated
text. We also added some qualitative examples to show how
the answers generated by our approach differ to those by
InstructGPT in Appendix F.

6.4. Error Analysis

To gain a deeper understanding of the model’s errors, we
sample 50 test examples with Rouge-L scores below 10 (i.e.,
bottom 25%). We exclude instances that are unanswerable
based on the given paper. We then classify errors into five
categories, ranging from E1 to E5.

E1 refers to cases where the model incorrectly classified the
question as unanswerable. E2 is the generation of irrelevant
content. E3 is cases where the model provides implicit
evidence but fails to generate an explicit answer. E4 refers
to cases where the generation is not factually grounded on
the source document. Lastly, E5 refers to cases with low
completeness, where the generation only covers a partial
answer (i.e., a sub-question). Additionally, a low Rouge
score does not necessarily indicate a wrong generation. We
identify two correct scenarios for this (C1 and C2). C1
refers to cases where the human labels are incorrect. C2 is
cases where both the generation and human label are correct,
but the lexical overlap between the two texts is low due to
the diversity of expressions.

Table 5 shows error analysis results. 36% of InstructGPT’s
answers and 34% of ours belong to C1 and C2: cases with
low ROUGE score, but correct. 48% of InstructGPT’s an-
swers are cases of refusal to answer (e.g., “I cannot find any
specific information...”), although the context contains rel-
evant evidences. We conjecture that InstructGPT has been
trained to avoid answering in uncertain cases for safety. In
contrast, our system did not generate such refusal responses,
since there is no such example in our training data. 44%
of our system’s answers are irrelevant to a given question,

although the text is grounded on evidence.

Type
Instruct

GPT
Our

Model
C1: incorrect human label 10% 10%
C2: low lexical overlaps 26% 24%
E1: predict unanswerable 48% 0%
E2: irrelevant generation 8% 44%
E3: failure of answering explicitly 0% 8%
E4: failure of grounding 6% 6%
E5: low completeness 2% 8%

Table 5. Error Analysis of InstructGPT and Ours.

7. Limitation
While we proposed a new benchmark for QA task on scien-
tific articles, evaluation is becoming difficult, especially on
recently emerging language models (InstructGPT as well as
ChatGPT, Bard). Such language models aim not only for
accurate responses, but also for longer responses through
structured writing. Hence, evaluation metrics using string
matching (such as ROUGE) may not represent the overall
quality of generated results. The concurrent work showed
that none of automatic metrics reliably matches human judg-
ments of overall answer quality (Xu et al., 2023). Future
work for our QA task could look deeper into adopting multi-
faceted evaluations.

8. Conclusion
Conventional information search requires a series of non-
trivial efforts from retrieving and reranking relevant infor-
mation to manually reading and restructuring the selected
information. Due to growing volumes of scientific papers
and professional articles, the traditional process is no longer
feasible, urging an innovation in knowledge processing and
reasoning. Generative QA would be a promising alternative,
but it lacks appropriate benchmark and principled method-
ologies that are focused on human intellectual capabilities:
full-stack reasoning.

In this paper, we propose the QASA: a novel benchmark
dataset and a computational approach. Our QASA bench-
mark guides expert readers and paper authors to generate
various types of questions and answers from surface to test-
ing and deep levels. Our QASA approach decomposes the
full-stack reasoning process into three reasoning subtasks:
associative selection, evidential rationale-generation, and
systematic composition. By modeling each subtask by pre-
trained LM, we show that FLAN-T5 finetuned on public and
synthetic data could serve as the best test-bed for our QASA,
proposing a new horizon of full-stack cognitive reasoning on
scientific articles such as research papers and manuscripts.
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A. Dataset collection details
Question writers and answer writers were paid US $28 and $63 (respectively) per paper on average and we have 26
question-makers and 28 answer-makers in terms of reader sessions and N authors in author sessions. We did not specify the
number of questions per paper to allow annotators to create meaningful questions rather than be forced to add unnecessary
questions. However, we recommend making around 15 questions per paper in order to guarantee dataset size.

Workers (i.e., question/answer writers and authors) provided basic information about their expertise in AI/ML and question
writers were asked to provide how familiar they already were with the paper for which they asked questions. The field
of workers was in the order of CV, NLP, and Applied ML, and there were also workers from theoretical ML, GNN, RL,
MLOps, music IR, and Human-centered AI. Most question writers (84.6%) had some experience in AI/ML, with 31.8%
having more than four years of experience. Similarly, the majority of answer writers (88%) had experience in AI/ML, and
36.4% of them had over four years of experience. 50% of the authors have over four years of relevant experience and 66.7%
of the authors have submitted three or more papers from their domains. 89% of the papers were seen by the question writers
for the first time.

B. Question level taxonomy
For each question level, we provided the types of questions that are in that level and examples for each of these question
types.

B.1. Surface questions

Surface-level questions aim to verify, compare, and understand basic concepts in the content. The answer content is directly
related to the words in the question and immediate context.

Verification

• Is this true? Did an event occur?
• Examples

– Did the authors have an experiment with training the state-of-the-art QA model with QuAC dataset?
– They claim that LSTM can synthesize unseen compositions. Is this true?

Disjunctive

• Is X or Y the case?
• Examples

– For metrics involving co-occurrence C, were they measured with the original C or the rectified C?

Concept completion

• Who? What? When? Where?
• Examples

– What are the metrics used to measure the audio quality in the model comparison experiment?
– Who were recruited as annotators of the entities and relations of concepts of lecture transcripts?

B.2. Testing questions

Testing questions are focused on meaning-making and alignment with readers’ prior knowledge. The questions are marked
by qualifying parameters of the components and generating initial interdependencies between the concepts. These questions
aim to find similar examples, quantify the variables, find meaning and make comparisons across concepts.

Example

• What is an example label or instance of the category?
• Examples

– What are the examples of the style of websites?
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Quantification

• What is the value of a quantitative variable? How much? How many?
• Examples

– How was the ratio of toxic words in the total vocabulary?
– According to the statement that the validation set is 15% of tottal dataset, how many data points are in the

validation set?

Definition

• What does X mean?
• Examples

– What does "non-factoid" mean?
– The result showed most dialogs in the QuAC dataset cover three to six of the chunks, but what does “chunk” mean?

Comparison

• How is X similar to Y? How is X different from Y?
• Examples

– What points in DDPM are novel compared to LDM?
– Likelihood-based methods do not suffer from the model-data mismatch issue. What are the benefits of using spectral

methods instead of using standard probabilistic inference?

B.3. Deep questions

The questions ask connections among the concepts in the content and elicit advanced reasoning in logical, causal, or
goal-oriented system.

Causal antecedent

• What state or event causally led to an event or state?
• Examples

– Why would end-users want to stylize or customize websites?
– Why do approaches that train transformation modules face difficulties in accessing prior knowledge with new

concepts?

Causal consequence

• What are the consequences of an event or state? What if X occurred? What if X did not occur?
• Examples

– The Low-rank Anchor Word algorithm (LAW) involves computing the QR decomposition of Y = QR. What is the
additional cost incurred by this step?

– The author used only 3-5 images of a user-provided concept to learn to represent it through new “words” in the
embedding space, would results improve with more images? Why or why not?

– While fine-tuning, the proposed method begins by unfreezing only the last layer and beginning training on that
unfrozen layer only. Is this method likely to work for generative (encoder-only) models, or is this something that
would work only in decoder-encoder models?

Goal orientation

• What are the motives or goals behind an agent’s action? Why did an agent do some action?
• Examples

– Why was a large language model used in classifying the relation between concepts?
– What are the different metrics are used in experiment 1 and 2?

Instrumental/procedural

• What plan or instrument allows an author to accomplish a goal? How did an author or author’s artifact do some action?
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• Examples
– How did the authors handled the issues with turker’s different cultural backgrounds?
– How does the proposed method address the issue of catastrophic forgetting?

Rationale

• How does the author show X (claim)? How does the result infer X (claim)? Why is it possible to say X (claim)?
• Examples

– How do they show that single word embeddings capture unique and varied concepts?
– How is “increased contextuality” observed in the data?

Expectation

• Why did some expected events not occur?
• Examples

– Why the patterns over increasing x-axis values are not always consistent?

C. Training Details
All of our experiments were conducted using 16 A100 GPUs. To simplify all experiments, we fixed the initial learning
rate to 1e-5. We trained all models until 5 epochs and selected the best checkpoint with average R-2 scores of answer
compositionon validation set.

D. Instructions
Our tasks consist of (1) associative selection, (2) evidential rationale generation, and (3) systematic composition. As shown
in Table 6, we composed instructional templates for each task.

Table 6. Task-specific prompts for finetuning
Task Templates

associative
selection

Is there a rationale or answer to this question in this context?
Context: {paragraph}
Question: {question}

evidential
rationale

generation

Write an answer or rationale to answer the question based on the context.
Context: {selected paragraph}
Question: {question}
Answer:

systematic
composition

Given the question, compose the multiple information into a coherent and comprehensive answer.
Evidences: {e for e in evidences}
Question: {question}
Answer:

E. Examples
Table 7 presents examples of QASA dataset. It includes the type of question, question, evidential rationales, answer, and
composition.

F. Qualitative Examples of Answers
G. Ethics Statement
We present a new dataset that uses papers authored by other researchers. In compliance with copyright regulations, we have
limited paper selection to papers available on arXiv that has been released under a Creative Commons Attribution license.
Prior to conducting the annotation process, we obtained consent from the annotators once explaining the purpose the task.
We collected information about annotators’ background in AI/ML, their number of publications, and their familiarity with
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QASA: Advanced Question Answering on Scientific Articles

Table 8. The qualitative examples of answers, evidential paragraphs, and rationales from Ours and InstructGPT
Question Answer-

Ours
Answer-InstructGPT Evidential Paragraphs Rationales

Give two
examples of

public BERT-
style english

corpora.

BookCorpus
and English
Wikipedia
are two
public
BERT-style
English
corpora.

Two examples of public BERT-style
English corpora are BookCorpus and
OpenWebText. BookCorpus is a large-
scale corpus of 11,038 books written in
English, while OpenWebText is a collec-
tion of over 8 million webpages. Both
corpora are used to train and evalu-
ate natural language processing models,
such as BERT.

[’We consider five English-language
corpora of varying sizes and do-
mains(...) We use the following text
corpora:•BookCorpus (Zhu et al., 2015)
plus English Wikipedia. This is
the original data used to train BERT.
(16GB).•CC-News, which we collected
from the English portion of the Com-
monCrawl News dataset (Nagel et al.„
2016). (...)]

[’CC-News,
BookCorpus
and Wikipedia
are BERT-
style english
corpora.’]

How many
tokens are
changed to
[MASK] in

BERT training?
Give a ratio.

BERT train-
ing uses
[MASK]
to replace
80% of the
tokens.

In BERT training, 15% of tokens are
changed to [MASK], resulting in a ratio
of 1:6.4 (15% of 512 tokens is approxi-
mately 80).

[‘A random sample of the tokens in the
input sequence is selected and replaced
with the special token [MASK]. (...)
BERT uniformly selects 15% of the in-
put tokens for possible replacement. Of
the selected tokens, 80% are replaced
with [MASK], 10% are left unchanged,
and 10% are replaced by a randomly se-
lected vocabulary token.’]

[‘Of the se-
lected tokens
15%, 80% are
replaced with
[MASK] dur-
ing training.’]

the papers they are annotating. However, we did not collect personal identifiable information without the annotators’ explicit
consent, except for payment purposes. Additionally, the information was not included in the dataset we proposed.
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