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Abstract—Recent maturity of Long Term Evolution (LTE) has
raised interest in assessing how efficiently the cells are deployed.
Since Cell Spectral Efficiency (CSE) is a principal indicator
of such assessment, we calculate the Cumulative Distribution
Function (CDF) of CSE using the measurement data obtained
from Rohde & Schwarz TSME which can decode the control
channel of the downlink signal. We adopt data processing
methods from our previous work for deriving the CDF of CSE.
In this paper, we propose a deep neural network model which
is modified from the previous one to guarantee that the CDF
generated from the model satisfies the probability axioms for
any cell configurations. Predicted results from the measured data
validate our analysis.

Index Terms—LTE, cell spectral efficiency, cumulative distri-
bution function, deep neural network

I. INTRODUCTION

As Long Term Evolution (LTE) grows enough to cover the
increasing traffic demands of mobile users, attention has been
focused on evaluating how efficiently LTE cells are deployed
from various perspectives. Since cell deployment directly
affects the quality of transmissions, analyzing Cell Spectral
Efficiency (CSE) can be a way of carrying out the evaluation.
CSE is defined as the aggregate ThroughPut (TP) of the users
normalized by the number of cells and the channel bandwidth.
Under this definition, the analysis requires scheduling records
on how the bits are transmitted through Resource Blocks (RBs)
for all users at the same time. Although such information
can be easily accessible in operators’ side, it is usually not
disclosed to the public, and several research works have been
based on in-field measurement data [1]–[3]. In our previous
work [1], noting the Physical Downlink Control CHannel
(PDCCH) of an LTE downlink signal includes the necessary
scheduling information, we utilized a popular commercial off-
the-shelf scanner called Rohde & Schwarz (R&S) TSME to
decode LTE PDCCH and analyzed the CSE performance using
data obtained from R&S ROMES software.

Since the CSE value depends on the user’s varying channel
condition, performance analysis of CSE needs to be addressed
from a stochastic point of view. In [1], novel transformation
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methods are devised so that the transformed results for cell
TP and RB utilization approximately follow a joint Gaussian
distribution, which is briefly reviewed in Section II. By
exploiting the transformations, the Cumulative Distribution
Function (CDF) of CSE can be computed by using Monte
Carlo integration technique. Also, a Deep Neural Network
(DNN) is applied to extend the analysis of all network con-
figurations, not just actual measured cases. Since we focus on
the CDF, it is necessary to ensure that the results of applying
DNN satisfy the axiomatic properties of probability. In this
work, we modify the DNN model given in [1] so that those
properties are satisfied when computing the CDF of CSE for
any cases.

The rest of the paper is structured as follows. Section II
presents the review of data processing given in [1]. Section
III explains our proposed model and the results of applying it.
Finally, Section IV concludes this work.

II. DATA PROCESSING

A. Data description

The data was measured for four days at Gangnam Station,
one of the most congested area of South Korea, and for sub-
GHz frequency of 10 MHz bandwidth. The data of the PDCCH
decoded by the TSME was provided via ROMES as a statis-
tical result for the sampled subframes during the predefined
Observation Internal (OI). To analyze the performance of CSE
from a stochastic point of view, the following three variables
defined as in [4] are used, all of which are measured during
the OI. The ’Number of RNTIs’ represented by N means
the number of different Radio Network Temporary Identifiers
(RNTIs) detected. The ‘RB usage of Cell’ represented by R
is calculated as [Sum of all used RBs in measured subframes]
/ [Sum of all RBs in measured subframes]. The ‘Average
Scheduled TP of Cell’ represented by T is calculated as [Sum
of all transmitted bits] / [Number of measured subframes].
We use R as a value in (0, 1) and T as the value in kbps
units, and from now on consider N , R, and T as random
variables. In addition, the goal of our paper is to compare how
CSE performance differs as the number of RNTIs increases,
so all data is collected and analyzed regardless of cell and
measurement date.
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Let D the set of all the data consisting of (r, t, n) triples
of realized values of R, T , and N , and let Dn be the set of
(r, t) pairs where N = n. For the description of the contents,
we called D as a set of all data, which was composed of
(r, t, n) of realized values of R, T , and N , and also called
Dn as a set of (r, t) pairs when N = n. Since the actual data
shows high time correlations having multiple runs of the same
realizations, we randomly choose K pairs from Dn and regard
it as a random sample from the conditional joint distribution
(R, T )|N = n.

B. Data transformation

As given in [1], a Quantile-Quantile (Q-Q) plot of R|N =
n against theoretical normal quantiles shows an ‘S’-shaped
curves in general, and it inspires the application of the trans-
formation family as follows:

U(r;u1, u2, u3) = u1 log (r)− u2 log (1− r) + u3,

where u1, u2 ≥ 0, and u3 ∈ R. Similarly, observing that
T |N = n usually shows a Q-Q plot which is downward arced
shape, the following family of transformation is applied.

V (t; v1, v2, v3) = v1 log(t) + v2t+ v3,

where v1, v2 ≥ 0, and v3 ∈ R. The optimal parameters
(u1, u2, u3) and (v1, v2, v3) are obtained so that mean squared
errors against the theoretical quantiles of the standard nor-
mal are minimized. In other words, the optimal parameters
minimize JR(u1, u2, u3) =

∑K
k=1 {qk − U (rk;u1, u2, u3)}2

and JT (v1, v2, v3) =
∑K

k=1 {qk − V (tk; v1, v2, v3)}2 where
qk = Φ−1 ((k − 0.375)/(k + 0.25)) for 1 ≤ k ≤ K and Φ(·)
is the CDF of the standard normal distribution.

C. Processing for SE analysis

As described in [1], normality tests are applied to con-
figure the data for SE analysis. We use Shapiro-Wilk and
Royston tests to check the marginal and joint normalities,
respectively, in the sense that the former does not mean
the latter. For a data point to be organized, we begin with
choosing a sample n for N with probabilities P (N =
n) = |Dn|/|D|. Then, a set of pairs {(rk, tk)}Kk=1 of
size K is chosen from Dn. With the optimal parameters
(u1, u2, u3) and (v1, v2, v3) for this set of pairs, Shapiro-
Wilk test is applied to each of {U(rk;u1, u2, u3)}Kk=1 and
{V (tk; v1, v2, v3)}Kk=1. If the normality assumption is ac-
cepted for both sets, Royston test is applied to the transformed
pairs {(U(rk;u1, u2, u3), V (tk; v1, v2, v3))}Kk=1. When the p-
value of the set is greater than the chosen significance level,
we can see that the set of transformed results is a random
sample of the joint normal distribution N

([
0
0

]
,
[ 1 ρ
ρ 1

])
where

ρ is the sample covariance. Then we structure a data point as
(n,θ) with θ = (u1, u2, u3, v1, v2, v3, ρ). A summary for this
process is provided in Fig. 1 (which is Fig. 6 in [1]).

III. CELL SPECTRAL EFFICIENCY ANALYSIS

Let CSE be denoed by S, then S can be calculated as
T/(wR), where w be the bandwidth in kHz unit, based on the
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Fig. 1. A summary of processing the data.

definition. Let some transformations U(·) and V (·) that make
(U(R), V (T ))|N = n approximately follow the joint normal
N

([
0
0

]
,
[ 1 ρ
ρ 1

])
be given. Then, the CDF P (S ≤ η|N = n)

for S|N = n can be derived as follows:

P (S ≤η|N = n) = P

(
T

wR
≤ η

∣∣∣∣N = n

)

=

∫ ∞

−∞
Φ

(
V
(
U−1(x)wη

)
− ρx√

1− ρ2

)
fU(R)|N=n(x)dx.

(∵ V (T )|U(R) = x,N = n ∼ N
(
ρx, 1− ρ2

)
)

(1)
By Monte Carlo integration technique, the integral (1) can be
computed as

1

Γ

Γ∑
i=1

Φ

(
V
(
U−1(xi)wη

)
− ρxi√

1− ρ2

)
, (2)

where {xi}Γi=1 is a random sample of size Γ from N (0, 1).

A. Proposed model

In our previous work [1], from a data point (n,θ), input
is set as (η, n, x) where η and x are random samples from
the uniform distribution on a range (0, 10) and the standard
normal N (0, 1), respectively. With this input, an output is set
to the argument of Φ(·) in (1) with θ as

yo(η, n, x;θ) =
V
(
U−1(x;θ)wη;θ

)
− ρx√

1− ρ2
. (3)

Then such an input-output pair is applied to a DNN as a data
point.

When η ≥ 0, the CDF of CSE should have a value of 0 at
η = 0 and increase to 1 as η increases. Since the argument of
Φ(·) in (1) goes to −∞ when η goes to zero and increases
when so does η, the desired properties are satisfied. As in [5],
instead of using the argument of Φ(·) in (1) as an output of
a DNN as (3), we approximate it by a parametrized function
satisfying intended properties. Our proposed function is given
as follows.

ym(η, n, x;θ) = c0 + c1 log η + c3η
c2

= c0 + c1 log η + c3e
c2 log η,

(4)
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Fig. 2. The DNN structure of our proposed model. ‘Exp.’ means an
exponential activation function.

where c0 ∈ R and c1, c2, c3 ≥ 0. The parameters c0, c1,
c2, and c3 are estimated by applying a DNN in the way of
approximating the value yo(η, n, x;θ) in (3) by ym(η, n, x;θ)
in (4). The structure of a DNN model for the proposed model
can be configured as given in Fig. 2.

B. Results

For DNN structure, we use standard multilayer perceptron
with Rectified Linear Unit activation function, which is widely
used in modern NNs [6]. We consider two cases: the ‘Previous’
model based on (3) and the ‘Proposed’ model based on (4).
DNN learning is performed with a data set of size 10000, 60%
of which is used as a train set and the rest used as a validation
set. The validation set is used for applying early stopping
technique to prevent overfitting. In addition, an l2 penalty with
a coefficient 0.01 is applied for both models. The DNN design
parameters are determined to minimize validation loss. After
model being learned through inputs (η, n, x) and respective
outputs for considered models, we calculate the CDF of CSE
for any input (η, n, x) by putting the output of the trained
model into Φ(·) and calculating (2) with Γ = 1000.

The results of the CDF of CSE for the considered models
are given in Fig. 3. Two layers with 32 hidden units for the
‘Previous’ model and five layers with 8 hidden units for the
‘Proposed’ model are selected as DNN design parameters.
As can be seen in Fig.3-(a), there are some cases that the
previous DNN model generates the CDFs that do not satisfy
the monotonicity and break the tendency. Such phenomena
especially occur when there is just small number of data
(n = 10) or not measured (n = 15 and 20). On the other hand,
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(b) Proposed model

Fig. 3. Predicted results for the CDF of CSE from previous and proposed
models.

we can check from Fig.3 (b) that the ‘Proposed’ model gives
the CDFs that satisfy the axiomatic properties of probabilities
and show a stable tendency even for unmeasured cases.

IV. CONCLUSION

In this work, we proposed a new model that improves our
previous DNN model to enable a stable analysis of the CSE
of LTE from a probabilistic point of view. By applying a
parametrized function to the output of DNN learning, we have
ensured that the axiomatic properties of probability are met in
any case in deriving the CDF of CSE. The analysis was based
on in-field measurement data provided by R&S TSME, and the
measured data was used to check the validity of our proposed
model through a comparison with predicted results.
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